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Abstract—We discuss how sensor technologies have enabled
the development of proactive energy management (EM) systems.
At the same time, we discuss how these emerging EM systems
motivate the development of new sensor technologies. Proactive
EM systems integrate advances in weather forecasting, sensors,
predictive models, and real-time optimization algorithms to
anticipate uncertain factors that affect energy performance and
costs and make real-time set-point corrections (AHU delivery
conditions, ventilation rates, thermostats) to modulate them. On-
going deployment studies have found that up to 30% HVAC
energy savings are achievable using this type of technologies. We
describe extensions of these systems to exploit emerging sensor
technologies including occupancy, ventilation, and air quality
sensors.

I. MOTIVATION

Proactive energy management (EM) systems can play a
significant role in achieving energy efficiency targets and can
also make buildings more active participants in smart grid
environments [1]. These EM systems exploit sensor data and
predictive building models to allow for a more proactive
modulation of building energy usage as external weather,
occupancy, and market signals change while ensuring occupant
thermal comfort and air quality.

A key novelty of this approach is that it enables energy
demand forecasting which can be used to coordinate the
operation of heating ventilation and air conditioning (HVAC)
systems and storage devices (e.g., ice storage) and thus enable
a more active building participation in several markets such
as day-ahead and real-time pricing markets, demand and
reserves markets, and ancillary services markets that central
grid operators can exploit to modulate grid contingencies
and supply fluctuations. This can significantly enhance the
flexibility of the power grid, which is critical to adopt re-
newable generation. In order to fulfill this vision, however, it
is necessary to develop scalable energy management solutions
that are flexible, inexpensive and easy to deploy, thus allowing
for wide-spread deployment.

Existing building management systems (BMS) serve mostly
as interfaces for building operators to monitor sensor data
and modify operational (set-point) conditions of air-handling
units, thermostats, chillers, ice storage, and other devices as
occupancy, weather, and price conditions change throughout
the day in order to minimize energy costs and satisfy occupant
thermal comfort. These systems are equipped with basic
controllers that track the set-points dictated by the human

operator or by the EM system which normally consists of a set
of optimization functions or rules that are tuned to minimize
energy (e.g., precooling and economizer control) [6].

A limitation of existing EM systems or functions is that they
are inherently reactive and cannot accurately capture multivari-
able interactions [4]. In other words, they lack mechanisms to
systematically predict and anticipate the integrated effect of
weather, occupancy, building design, and market prices on
the building dynamic response, energy demands and costs,
and comfort conditions. This lack of predictive knowledge
limits the exploitation of the building dynamic momentum
to reduce and energy and to ensure a strict satisfaction of
comfort conditions. In addition, it limits the participation of
the building on electricity markets. For instance, buildings are
normally price-takers and participate sporadically on demand
response events during extreme power grid contingencies. This
situation can expose buildings to the high volatility of real-
time prices and discourages investment in sensors, automation,
and storage technologies. The lack of predictive knowledge in
existing EM systems, in addition, underestimates the value
of the building active and passive storage assets by utility
companies, independent system operators (ISOs), and regional
transmission operators.

Recently, proactive energy management systems have
emerged as a promising alternative for building automation
[12], [1], [13], [9], [8]. These systems use of predictive mod-
els to automatically and dynamically optimize the operating
conditions of the HVAC system (e.g., air supply and chiller
set-points) and of the building (e.g., thermostat set-points) to
minimize energy consumption and maintain comfort condi-
tions as internal occupancy and external ambient conditions
change throughout the day. We highlight that these systems
can indeed reduce energy consumption and not only energy
costs which has been the main driver behind peak-shifting
strategies [2], [3]. Existing commercial vendors of this type of
technology include BuildingIQ [15] and Clean Urban Energy.

The use of predictive models enables the coordination of
building thermal momentum with dynamic trends of weather,
occupancy, and prices. The use of predictive models also
enables the system to quantify and anticipate the effect of the
building internal and external conditions on energy demands
and economic performance. Notably, predictive models can be
constructed based on data-based (also called statistical or ma-
chine learning) techniques that exclusively use available sensor
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Fig. 1. Schematic representation of interface between air-handling unit and
building (cooling mode).

data and minimal building topology information [12], [15],
[6]. This approach enables a high degree of modularity, low
technological costs, and fast deployment times. The impact
of this type of technology, however, strongly depends on the
availability of low-cost, flexible, and robust sensor networks
that enable a sufficient observability and controllability of the
building environment.

In this short note we highlight the principles behind proac-
tive energy management and describe how emerging sensor
technologies (occupancy, air quality) can be exploited by these
systems to maximize energy savings while satisfying comfort
and air quality requirements [12], [7], [13]. In addition, we
discuss how the deployment of these more advanced real-time
optimization strategies has started to indicate needs in sensor
technologies. Consequently, we argue that a more integrated
approach to EM systems and sensor development is necessary
in order to minimize deployment costs and maximize energy
savings and deployment.

II. PROACTIVE ENERGY MANAGEMENT

A typical electric HVAC system is illustrated in Fig. 1
and 2. Ambient air at prevailing temperature, humidity and
pollutant conditions (CO2,CO, VOCs, particles) is conditioned
in an air-handling unit (AHU). (More complex configurations
than that in Fig. 2 use chillers and ice storage to provide the
cooling load to the AHU.) Humidity is modulated using a
humidifier/dehumidifier that cools the mixture down to remove
latent energy in the air. The mixture is further cooled to
remove sensible heat and achieve the cooling load required
by the building. The cooling load can be achieved by finding
appropriate conditions for supply temperature and air volume.
The conditioned air is distributed to the building zones using
air dampers. The dampers are in closed loop with thermostats
that sense the zone temperature as internal conditions change.
Internal changes include heat gains due to occupants, equip-
ment, and thermal loads resulting from external solar radiation
and wind convection. The zone air is removed continuously
from the zones and recycled to the AHU. This is mixed with
ambient air to close the cycle. Depending on the ambient
conditions, optimal combinations of ambient and recycle air
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Fig. 2. Typical energy savings profile of proactive EM system.
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Fig. 3. Five day ahead ambient temperature forecast and uncertainty
information obtained with numerical weather prediction WRF. Dots are real
measurements.

can be exploited to save energy in the AHU. The external
ventilation rate, however, is currently constrained by minimum
rates set by ASHRAE standard 62 based on the estimated
number of occupants.

Proactive energy management systems use weather forecasts
and predictive dynamic models of the building zones to
anticipate and exploit weather and internal condition trends to
minimize the cooling load in the AHU while satisfying thermal
comfort of the occupants (e.g., using PMV and PPD metrics
[10]). A key principle is that the building has sufficient dy-
namic momentum or thermal mass to withhold the conditioned
air internally over extended periods of time without affecting
comfort conditions. This basic synchronization principle is
key in saving energy and in modulating demands throughout
the day [6]. In Fig. 2 we present the base and optimized
power profiles for an AHU operating at Argonne National



Laboratory using BuildingIQ technology [15]. We note that
20-30% electricity savings can be realized during off-peak and
peak times even under strict comfort conditions. As explained
in [15], the peak demand can be further decreased by relaxing
comfort conditions at critical times.

Proactive systems perform comfort modulation by exploit-
ing the building momentum and by direct feedback from occu-
pants to minimize occupancy dissatisfaction. This is a notable
difference with existing EM practice that fixes the building
temperature conditions that are believed to be comfortable for
the entire occupant population. This can significantly increase
energy demands since perceived comfort varies due to many
other other factors including metabolism, age, clothing, and
so on. In addition, proactive systems can exploit periods of no
occupancy to relax comfort conditions and minimize HVAC
energy as well as to store ambient air in the building and thus
minimize unnecessary air conditioning [15].

Several technological advances make possible the devel-
opment and low-cost deployment of proactive energy man-
agement systems. The first is the availability of sensor in-
formation. Sensor data is necessary to observe and quantify
the performance of the building. In addition, low-cost sen-
sors are necessary since a large share of sensors is usually
needed to capture the distributed nature of buildings. The
second enabler is the availability of data-based or statistical
modeling techniques [11] that enable the creation of low-cost
and adaptive building models using available sensor data and
minimal building topological information.

The third important advances are numerical weather predic-
tion (NWP) models. These systems are currently capable of
providing accurate forecasts of key variables that drive build-
ing energy demands such as ambient temperature, humidity,
wind speed and direction, and solar radiation. In Fig. 3 we
present a five-day-ahead forecast and uncertainty information
obtained with the NWP model WRF, developed by several
federal agencies, including the National Oceanic and Atmo-
spheric Administration. This system is currently in operational
mode at the Mathematics and Computer Science Division at
Argonne National Laboratory and has been used extensively
to estimate economic benefits of weather forecasting in power
grid and building operations [1], [4], [14]. Note the remarkable
predictive capabilities of the NWP model for the ambient tem-
perature, the most critical variable driving HVAC electricity
demand. As expected, merging weather forecasts with building
sensors and predictive models results in a powerful paradigm
to anticipate and modulate building demands. In addition, it
can provide valuable demand forecast information to power
grid operators. This is a key capability of EM systems in future
smart grid environments.

III. EXPLOITING EMERGING SENSOR TECHNOLOGIES

One of the key enablers in satisfying occupant comfort and
reducing energy intensity using automated EM systems is the
availability of information of the building physical (air quality,
humidity, temperature) and non-physical conditions (occupant
number and location, heat loads).
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Fig. 4. Occupant movement in commercial-sized building.

In the case of occupancy, occupants are currently counted
according to their associated with their fixed physical space
(e.g., office) and average behavior. Occupants, however, move
constantly throughout the building, implicitly affecting the
distribution of energy and efficiency of the HVAC system.
In Figure 4, we present a snapshot of occupant locations at a
building in Argonne. As can be seen, significant portions of
the building are unoccupied and thus present an opportunity
for energy savings. The key obstacle, however, is the ability
of the system to quantify the number of occupants to optimize
ventilation rates at the central HVAC level and at disaggregated
zone levels. In the absence of an accurate occupancy count,
extremely high (and difficult to measure) ventilation rates
are enforced in order to maintain operation compliant with
ASHRAE 62 standard which requires a minimum ventilation
rate per occupant to maintain pollutants at safe levels. The
use of conservative ventilation rates has been identified as
one of the most important sources of energy inefficiency in
commercial buildings since it limits recirculation and requires
constant reconditioning of external ambient air [7], [5]. For
instance, the number air changes per hour in typical buildings
can be on the order of 3-6. Considering the massive amounts
of air contained in a commercial-sized building, this represents
a significant source of inefficiency. Surrogate CO2 models
coupled to CO2 sensors can be exploited to infer occupancy
count in different parts of the building. A central CO2 sensor
in the return duct of the HVAC system can be used to estimate
total occupancy count and estimate the minimum ventilation
rates. Installing CO2 sensors at individual zones can also be
used (in principle) to optimize local ventilation rates. Another
strategy to estimate occupancy count consists in using imaged-
based sensor technologies. This strategy is more informative
since it not only provides occupancy count but also CO2

and thermal loads. This reduces the uncertainty associated
to infiltration/exfiltration rates. A key obstacle in exploiting
occupancy information in disaggregated ventilation control,
however, is that ventilation rates are manipulated by VAV
boxes that try to control the zone temperature. A strategy to
bypass this limitation is to change the delivery temperature
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Fig. 5. Simulated CO2 dynamics under variable ventilation rates.

of the supply air to implicitly control the VAV ventilation
rate [12]. An important limitation of inferring occupancy
through CO2 sensors, however, is the limited availability of
infiltration/exfiltration rate information which can significantly
bias the occupancy estimates.

The use of predictive models of air quality conditions in
proactive EM systems has the potential of saving significant
amount of energy. This is based on the observation that pol-
lutant dynamics are significantly slow so that ventilation rates
can be minimized during occupied times without affecting
the air quality inside the building during occupied conditions
so that building purge can be performed at night during
unoccupied conditions. Simulation studies have shown that
over 50% HVAC energy savings are possible. A key obstacle in
deploying this type of strategies, however, is that the existing
ASHRAE standard 62 takes limited building dynamics into
account, which vary significantly with the ventilation rates
themselves. In Fig. 5, we present the dynamics of CO2 under
two different ventilation policies.

Simulation studies have also shown that per-occupant venti-
lation rates can optimized dynamically using proactive systems
without reaching perceptible pollutant concentrations [13]. In
order to achieve this vision, EM systems it is critical to develop
low-cost indoor air quality (IAQ) sensors that can be used
to control air quality conditions directly instead of indirectly
through ventilation rates. We highlight that the lack of IAQ
information coupled to the lack of EM systems capable of
exploiting it efficiently is perhaps the most significant obstacle
in achieving large-scale energy savings in existing and new
buildings.
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